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Abstract  Effects of individual quantitative trait loci 
(QTLs) can be isolated with the aid of linked genetic 
markers. Most studies have analyzed each marker or 
pair of linked markers separately for each trait included 
in the analysis. Thus, the number of contrasts tested can 
be quite large. The experimentwise type-I error can be 
readily derived from the nominal type-I error if all 
contrasts are statistically independent, but different 
traits are generally correlated. A new set of uncorrelated 
traits can be derived by application of a canonical 
transformation. The total number of effective traits will 
generally be less than the original set. An example is 
presented for DNA microsatellite D21S4, which is used 
as a marker for milk production traits of Israeli dairy 
cattle. This locus had significant effects on milk and 
protein production but not on fat. It had a significant 
effect on only one of the canonical variables that was 
highly correlated with both milk and protein, and this 
variable explained 82% of the total variance. Thus, it 
can be concluded that a single QTL is affecting both 
traits. The effects on the original traits could be derived 
by a reverse transformation of the effects on the 
canonical variable. 
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Introduction 

Genetic markers can be used to detect individual loci 
affecting quantitative traits (QTLs). While many differ- 
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ent experimental designs have been suggested for self- 
breeding and crossbreeding organisms (reviewed by Sol- 
ler 1990, 1991, 1994; Weller 1992), until 1980 the applica- 
tion of these techniques was limited by the scarcity of 
segregating markers in populations of interest. Recently, 
new classes of highly polymorphic DNA-level genetic 
markers have been developed and applied to QTL 
detection (Georges et al. 1995; Jacob et al. 1991; Pater- 
son et al. 1988; Ron et al. 1994). Most of the studies were 
an analysis of each marker or pair of linked markers 
separately for each trait included in the analysis. For 
example, Weller et al. (1988) performed a separate analy- 
sis of variance for all 180 possible combinations of ten 
genetic markers and 18 quantitative traits. Thus, nine 
"significant" effects at the 5% level would be expected 
purely by chance. Various studies have noted the prob- 
lem of multiple comparisons, especially with respect to 
multiple markers. The usual suggestion is to raise the 
"nominal" significance level so that the overall experi- 
ment type-I error is no greater than 5%. Lander and 
Botstein (1989) developed formulas for the relationship 
between "nominal" and experiment type-I errors for 
multiple markers for both "sparse map" and "dense 
map" situations. For a sparse map, markers are assumed 
to be uncorrelated, and the overall experiment type-I 
error, c~, can be computed as: c~ = 1 -  ( 1 -  p)", where 
p = "nominal" type-I error and n = number of markers. 
However, as the nominal type-I error is reduced, the 
type-II error is increased, and the statistical power is 
lowered. Jansen (1994) has considered this problem in 
detail with respect to QTL detection. 

For several uncorrelated traits, the overall experi- 
ment type-I error, c~, can be computed similarly with 
n = number of traits. However, this formula is not cor- 
rect if some of the traits are correlated. Another problem 
in QTL detection arises when the same marker is shown 
to have a similar association with several correlated 
traits. If each trait is analyzed separately, it cannot be 
deduced whether these effects are due to one locus with 
correlated effects on these traits, or to several loci each 
affecting a different trait. 
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Korol et al. (1995) suggested a multivariate analysis 
for two correlated traits, and showed that under certain 
circumstances a multivariate analysis can be more 
powerful than single-trait analysis. In their method the 
number of parameters that must be estimated is a 
function of the number of traits analyzed. They did not 
attempt to analyze a situation of more than two traits, 
but the increase in complexity of the analysis would be 
dramatic. Thus, this method is not a practical alterna- 
tive if the number of traits analyzed is large. In commer- 
cial animal populations genetic evaluations of many 
individuals for many correlated traits are required. In 
order to avoid the complexity of a very large multivari- 
ate analysis, several studies have proposed univariate 
analysis on uncorrelated traits derived by a canonical 
transformation of the original traits (reviewed by Du- 
crocq and Besbes 1993). The solutions for the original 
traits can be obtained by reverse transformation. James 
(1991) was the first to suggest the application of canoni- 
cal transformation to QTL detection, but he did not 
elaborate on the approach. 

In this study the application of canonical transfor- 
mation to QTL detection and analysis using genetic 
markers is described. An example is given using milk 
production traits of Israeli Holstein dairy cattle and a 
segregating DNA microsatellite. 

Theory 

For a given set of traits with known (co)variance matrix, a new set of 
traits can be derived by multiplication of the vector of the original 
traits by a matrix whose columns are the cigenvectors of the 
phenotypic (co)variance matrix. The resultant "canonical variables", 
which are linear functions of the original traits, are phenotypically 
uncorrelated. The number  of canonical variables will be equal to the 
original number  of traits. Generally, the original traits are standard- 
ized to unit variance by division by their standard deviations prior to 
computat ion of the eigenvectors. The (co)variance matrix among the 
traits is then equal to the correlation matrix, and the eigenvalues of 
the correlation matrix are equal to the coefficients of determination of 
the canonical variables for the overall variance. Thus, canonical 
variables with very low eigenvalues, relative to the sum of all eigen- 
values, can be deleted from the analysis because they explain only a 
minuscule fraction of the variance of the original traits (Mardia et al. 
1979). 

The marker-linked effects can then be estimated on the cano- 
nical variables rather than the original traits, with three advantages. 
(1) Because the canonical variables are uncorrelated, the overall 
experiment significance level can be readily derived from the nominal 
significance level, as described above. (2) For  highly correlated traits, 
it will generally be possible to reduce the number  of variables 
analyzed because some of the eigenvalues will be very small. Thus, it 
will be possible to obtain the same experimentwise significance level 
with a less stringent nominal significance level. (3) Because the 
canonical variables are uncorrelated, a significant marker association 
with two traits is indicative of two linked QTL affecting the two 
variables. 

Once significant effects are detected for the canonical variables, 
the effects on the original traits can be derived by the reverse 
transformation. That  is, the inverse of the eigenvector matrix is 
multiplied by the vector of effects. It is assumed that  all traits are 
recorded on all individuals, but removal of this restriction will be 
considered below. 

Example calculation 

The methodology will be illustrated using the results of 
Ron et al. (1994). Genetic evaluations were computed 
from the entire milk production recorded Israeli-Hol- 
stein population since 1985 for 305 day milk, fat, and 
protein yields (in kilograms) by a repeated measures 
animal model (Israel 1993; Wiggans et al. 1988). Only 
lactations with valid records for all three traits were 
included in the analysis. Production records of cows 
that were culled during the lactation, and records in 
progress at the time of data collection were extended to 
expected complete lactation production. Evaluations of 
fat and protein concentration were derived from the 
evaluations of total production (Israel 1993). Thus, es- 
timated breeding values were derived for all animals for 
five production traits. Reliabilities of the genetic evalu- 
ations were estimated by the method of Misztal et al. 
(1991). 

Blood or hair roots were collected from 151 cows, 
daughters of sire 783, in 11 Kibbutz herds chosen at 
random. Mean reliability of the cow evaluations was 
52%. Direct polymerase chain reaction (PCR) analysis 
of 4-10 hair roots was performed as described by Ron et 
al. (1994). The cows were genotyped for microsatellite 
D21S4, which is located on chromosome 21 (Steffen et 
al. 1993). Sire 783 was heterozygous for alleles 18 and 21, 
where each allele is denoted by the number of TG 
repeats in the microsatellite core. Because dams of the 
cows were not genotyped, the origin of the alleles of the 
daughters could be determined only if a daughter geno- 
type was different from that of her sire (Ron et al. 1993). 
Thus, allele 18 was inherited by 65 daughters, allele 21 
by 50 daughters, and sire allele origin could not be 
determined for the remaining 36 daughters. 

The differences in breeding values between the 
daughter groups, standard errors of the differences, and 
significance levels are given in Table 1. The results 
presented were collected to confirm a previous experi- 
ment in which sons of sire 783 were genotyped for ten 
loci, including D21S4, but only the latter locus was 
found to have a significant effect on production traits 
(Ron et al. 1994). Thus, for our experiment, single-sided 
significance values are appropriate. The differences be- 
tween the two cow groups were 121 kg milk, 1.7kg fat, 
and 2.7 kg protein, and in the same direction as in the 

Table 1 The substitution effects and the t-test probabilities for alleles 
18 and 21 of locus D21S4 among the daughters of sire 783 

Trait (kg) Substitution effect a Standard error Probability 

Milk 121.31 60.57 0.029 
Fat  1.69 2.02 0.203 
Protein 2.75 1.63 0.047 

a Difference in mean breeding values between 65 cows that inherited 
allele 18 and 50 cows that inherited allele 21 
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previous experiment. The average standard deviations 
for the estimated daughter breeding values were 326 kg 
milk, 10.7kg fat, and 8.7kg protein. Since breeding 
values are regressed, these standard deviations are less 
than the genetic standard deviations for this population 
given in Pasternak and Weller (1993). The allele substi- 
tution effects were significant by the t-test (P < 0.05) for 
milk and protein, but not for fat. The effects of this locus 
on percentage fat and protein were not significant (Ron 
et al. 1994). 

The correlation matrix of the estimated breeding 
values for milk, fat, and protein yields is given in Table 2: 
all correlations are greater than 0.5, and milk and 
protein are the most highly correlated. These relation- 
ships are well-known from many studies (Pasternak and 
Weller 1993). The matrix of eigenvectors and the eigen- 
values are given in Table 3. The eigenvalues indicate that 
the second and third variables explain more than 95% of 
the variance. Thus, variable one can be disregarded with 
virtually no loss of explanatory power. 

Canonical variables were computed by first standard- 
izing the production traits to unit variance by division 
by their standard deviations, and then multiplication of 
the matrix of standardized evaluations by the eigenvec- 
tor matrix. The correlations between the original traits 
and the canonical variables are given in Table 4. Vari- 
able three is highly correlated with all three original 
traits. Variable two has a correlation of about 0.5 with 
fat and a lower correlation with the other original traits. 
The correlations between variable one and the other 
three traits are all less than 0.3. Thus, variable three 

�9 includes the common variation among the three traits, 
especially milk and protein; variable two includes the 
variation in fat that is not correlated to the other traits; 
and variable one includes the residual variation. 

Table 4 The correlations between the original traits and the canoni- 
cal variables 

Canonical variable Trait (kg) 

Milk Fat  Protein 

1 0.2117 0.0999 -0 .2893 
2 - 0.3812 0.5160 -0 .1008 
3 0.8999 0.8507 0.9519 

Table 5 The allele substitution effects and t-test probabilities for 
locus D 21 $4 for the canonical variables 

Canonical Substitution Standard error Probability 
variable effect a 

1 0.008 0.070 0.452 
2 -0 .143  0.122 0.122 
3 0.492 0.291 0.047 

a Difference in mean breeding values between 65 cows that inherited 
allele 18 and 50 cows that  inherited allele 21 

Substitution effects, their standards errors, and sig- 
nificance levels for the effect of locus D21S4 on the 
canonical variables are given in Table 5. This locus has a 
significant effect only on variable three, which is highly 
correlated with all three traits. The significance level was 
the same as for protein, which was slightly higher than 
for milk. 

The allele substitution effects for the original traits 
can be derived by multiplication of the inverse of the 
eigenvector matrix by the vector of allele effects on the 
canonical variables. Nearly identical results to those 
presented in Table 1 are derived if the estimated effects 
for variable one are replaced with zeros. 

Table2 The correlation matrix ofes t imatedcowbreedingvaluesfor  
the three production traits 

Trait Milk Fat  Protein 

Milk t.000 0.590 0.833 
Fat  - 1.000 0.729 
Protein - - t.000 

Table 3 The matrix of eigenvectors and the eigenvalues for the 
estimated breeding values of the production traits 

Eigenvectors Total 

1 2 3 

Milk (kg) 0.5688 -0 .5870  0.5762 
Fat  (kg) 0.2683 0.7946 0.5447 
Protein(kg) -0 .7775  -0 .1552  0.6094 
Eigenvalues 0.1385 0.4218 2.4398 3.0000 
Proport ion of total 

of eigenvalues 0.0462 0.1406 0.8133 1.0000 

Discussion 

A systematic genome search for QTLs of economic 
importance in any of the major agricultural species 
requires genotyping hundreds of genetic markers and 
analysis of 10-20 quantitative traits (Georges et at. 1995; 
Paterson et al. 1988; Weller et al. 1988). Thus, the total 
number of comparisons will be huge if each marker-trait 
combination is analyzed separately. As the number of 
comparisons increases, the "nominal" type-I error per 
test must be decreased in order to obtain the required 
experiment-wise type-I error. For example, Georges et 
al. (1995) only considered contrasts with LOD 
scores > 3, i.e. a likelihood ratio of 1000. Although 
decreasing the type-I error decreases the probability of 
"false positives", it also decreases the statistical power to 
detect "true" effects. Furthermore, with many compari- 
sons, the estimates of those effects deemed "significant" 
will be biased (Georges et al. 1995). These problems can 
only be alleviated by decreasing the number of compari- 
sons. 
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Recently VanRaden and Weller (1994) showed how a 
single analysis can be performed for each chromosome 
even if the experiment includes many segregating 
markers on each chromosome. Thus, for a single trait 
with many markers, the number of analyses is collapsed 
into a single independent analyses for each chromo- 
some, which are independently distributed. When a 
canonical transformation is used, a multi-trait analysis 
with many markers can be collapsed into a single analy- 
sis for each combination of marked chromosome and 
canonical variable. Besides the very large reduction in 
the number of comparisons, each test will be statistically 
independent of all the others so that the overall experi- 
ment significance level can be readily calculated from a 
given nominal significance level. 

A number of studies have suggested that statistical 
power per individual genotyped can be increased by 
genotyping only individuals with extreme genotypes for 
a quantitative trait (Lander and Botstein 1989; 
Lebowitz et al. 1987). With the phenotyping of many 
extreme individuals, the power to detect a segregating 
QTL per individual genotyped can be increased fourfold 
(Darvasi and Soller 1992). However, it is not clear how 
to apply this technique if more than one quantitative 
trait is considered. By a canonical transformation, it 
should be possible, first, to reduce the total number of 
traits under consideration, and then to rank the import- 
ance of the canonical variables based on their eigen- 
values. Thus, even if many traits are considered, selective 
genotyping can still be used for two or three canonical 
variables with the highest eigenvalues. 

For the example presented, the nominal significance 
level, p, required to obtain an overall significance level of 
~=0.05 will be: p = l - e x p [ ( l o g  0.95)/3] = 0.017. 
None of the original three traits are significant at this 
nominal level. However, once the canonical transfor- 
mation is applied, only the two variables with the 
highest eigenvalues need to be considered (Table 3). In 
this case, there are only two contrasts, and the overall 
significance level is 0.025. This is still less than the 
probability of 0.047 for canonical variable three, and the 
null hypothesis still cannot be rejected with an experi- 
ment-wise significance level of 0.05. 

Both milk and protein were significant at the nominal 
0.05 level, but only one of the canonical traits showed a 
nominally significant effect. Moreover, by application of 
the reverse transformation, it was shown that the effect 
of locus D21S4 on both traits can be explained by the 
effects associated with two canonical variables, of which 
only one was significant. Thus, it appears that only a 
single QTL is affecting both traits. 

Although the original analysis also considered fat 
and protein concentration (Ron et al. 1994), the matrix 
of eigenvectors could not be computed for all five traits 
because of dependencies among the traits. Genetic 
evaluations for fat and protein concentration are direct 
functions of the other traits (Israel 1993). 

The data presented are somewhat problematic in that 
the analysis was performed on predicted breeding 

values, which are regressed estimates of the true breed- 
ing values, and the variance of these values is a function 
of their reliability. Direct analysis of records was not 
practical because data were collected over many herds, 
the cows have multiple records, and individuals are 
related. Hoeschele and VanRaden (1993) suggested us- 
ing "daughter yield deviations", for analysis via the 
"granddaughter design" (Weller et al. 1990). Similarly, in 
the current "daughter design" analysis it would be pos- 
sible to analyze cow "yield deviations" that are corrected 
for fixed effects but are not regressed. However, the 
variance of yield deviations is still a function of the 
quantity of information available on each cow. 

In the current analysis, the correlation matrix of the 
estimated breeding values was diagonalized. Since this 
matrix is slightly different from the genetic correlation 
matrix (Pasternak and Weller 1993), the genetic correla- 
tion matrix was not completely diagonalized. A possible 
alternative would be to compute genetic evaluations or 
yield deviations from a set of canonically transformed 
variables with both residual and genetic covariance 
matrices diagonalized. However, this can only be direct- 
ly applied if the model includes no other random factors, 
all traits are recorded on all individuals, and all traits 
have the same incidence matrix for all fixed effects 
(Ducrocq and Besbes, 1993). 

The example presented met the last two criteria, but 
the repeated records analysis included a permanent 
environmental effect in addition to the genetic and 
residual effects. Additional random factors can be ac- 
commodated by applying a compromise diagonali- 
zation, which is adequate if the (co)variance matrices of 
the random factors are similar (Lin and Smith 1990). 
Furthermore, Ducrocq and Besbes (1993) demonstrate 
that a canonical transformation can be applied even if 
all traits are not recorded on all individuals by replacing 
missing values with their expectations. 
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